Editing
MHD Core
From FusionGirl Wiki
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
[[MHD Tech]] [[Magnetohydrodynamics]] Magneto Hydro Dynamic Core A Levitation Power Core Fundimental Technology for the operation of a [[Star Speeder]] and [[Magneto Speeder]] https://github.com/Jthora/MHD-Core = MHD Core Project: Mathematical Equations and Data = This document compiles all the mathematical equations, values, and data discussed in the MHD Core project presentations. ---- == Theoretical Foundations == === Quantum Field Theorist's Equations === '''Zero-Point Energy of a Quantum Harmonic Oscillator:''' <math>E = \frac{1}{2} \hbar \omega</math> * ''E'': Zero-point energy * ''<math>\hbar</math>'': Reduced Planck's constant * ''<math>\omega</math>'': Angular frequency '''Casimir Effect Force Between Two Plates:''' <math>F_{\text{Casimir}} = \frac{\pi^2 \hbar c}{240} \frac{A}{L^4}</math> * ''F''<sub>Casimir</sub>: Casimir force * ''c'': Speed of light * ''A'': Area of the plates * ''L'': Separation between the plates '''Dynamic Casimir Effect Photon Generation Rate:''' <math>\Gamma = \frac{\pi \omega_{\text{cavity}}^2}{3c^2} \left( \frac{\Delta L}{L} \right)^2</math> * ''<math>\Gamma</math>'': Photon generation rate * ''<math>\omega</math>''<sub>cavity</sub>: Resonant frequency of the cavity * ''<math>\Delta L</math>'': Modulation amplitude of cavity length * ''<math>L</math>'': Original cavity length '''Expectation Value of the Energy-Momentum Tensor:''' <math>\langle T_{\mu\nu} \rangle = -\frac{\hbar c}{720 \pi^2} \frac{1}{L^4} g_{\mu\nu}</math> * ''T''<sub>μν</sub>: Energy-momentum tensor * ''g''<sub>μν</sub>: Metric tensor of spacetime ---- === Electromagnetic Field Specialist's Equations === '''Modified Wave Equation with Scalar Potential:''' <math>\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -\frac{\rho}{\epsilon_0}</math> * ''<math>\phi</math>'': Scalar potential * ''<math>\rho</math>'': Charge density * ''<math>\epsilon_0</math>'': Vacuum permittivity '''Magnetic Flux Quantum:''' <math>\Phi_0 = \frac{h}{2e}</math> * ''<math>\Phi</math>''<sub>0</sub>: Magnetic flux quantum * ''h'': Planck's constant * ''e'': Elementary charge ---- == Material Development == === Superconducting Material Properties === '''Yttrium Barium Copper Oxide (YBCO):''' * '''Critical Temperature (''T''<sub>c</sub>):''' Approximately 92 K * '''Critical Current Density (''J''<sub>c</sub>):''' Exceeding <math>(1 \times 10^6)</math> A/cm² at 77 K '''Barium Zirconate Nanoparticles Enhancement:''' * '''Increase in Critical Current Density:''' 30% under high magnetic fields ---- === Quantum Behaviors in Superconducting Materials === '''Cooper Pair Formation:''' * Electrons form bound pairs enabling zero electrical resistance. '''Flux Quantization Equation:''' <math>\Phi = n \Phi_0</math> * ''<math>\Phi</math>'': Magnetic flux through a superconducting loop * ''n'': Integer (quantum number) * ''<math>\Phi</math>''<sub>0</sub>: Magnetic flux quantum <math>(\Phi_0 = \frac{h}{2e})</math> '''Energy Gap in Superconductors:''' <math>\Delta E = 2\Delta</math> * ''<math>\Delta E</math>'': Energy required to break a Cooper pair * ''<math>\Delta</math>'': Energy gap parameter ---- == Engineering Design == === Levitation System Equations === '''Magnetic Force Equation:''' <math>\mathbf{F}_{\text{mag}} = \nabla (\mathbf{m} \cdot \mathbf{B})</math> * ''<math>\mathbf{F}</math>''<sub>mag</sub>: Magnetic force * ''<math>\mathbf{m}</math>'': Magnetic moment * ''<math>\mathbf{B}</math>'': Magnetic field '''Electrostatic Force Equation:''' <math>\mathbf{F}_{\text{elec}} = Q \mathbf{E}</math> * ''<math>\mathbf{F}</math>''<sub>elec</sub>: Electrostatic force * ''Q'': Electric charge * ''<math>\mathbf{E}</math>'': Electric field ---- == Control Systems and Simulations == === Levitation Control Equations === '''State Equations:''' <math> \begin{cases} \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{v}} = \frac{1}{m} \left( \mathbf{F}_{\text{mag}} + \mathbf{F}_{\text{elec}} + \mathbf{F}_{\text{dist}} \right) \end{cases} </math> * ''<math>\mathbf{x}</math>'': Position vector * ''<math>\mathbf{v}</math>'': Velocity vector * ''m'': Mass of the core * ''<math>\mathbf{F}</math>''<sub>dist</sub>: Disturbance force '''Cost Function for Nonlinear Model Predictive Control (NMPC):''' <math>J = \int_{t}^{t+T_p} \left[ \|\mathbf{x}_{\text{ref}}(t) - \mathbf{x}(t)\|_Q^2 + \|\mathbf{u}(t)\|_R^2 \right] dt</math> * ''J'': Cost function * ''T''<sub>p</sub>: Prediction horizon * ''<math>\mathbf{x}</math>''<sub>ref</sub>: Reference position * ''<math>\mathbf{u}</math>'': Control input * ''Q'', ''R'': Weighting matrices === Charge Regulation Equations === '''Sliding Surface Definition:''' <math>s(t) = e(t) + \lambda \int_{0}^{t} e(\tau) d\tau</math> * ''s(t)'': Sliding surface * ''e(t) = q_{\text{ref}}(t) - q(t)'': Charge error * ''<math>\lambda</math>'': Positive constant '''Control Law:''' <math>u(t) = -k \cdot \text{sign}(s(t)) + \dot{q}_{\text{ref}}(t)</math> * ''u(t)'': Control input * ''k'': Adaptive gain * ''sign(s(t))'': Sign function ---- == Acoustic Integration == === Hypersound Frequencies and Phonon Interactions === * '''Hypersound Frequency Range:''' Above 1 GHz * '''Phonon-Electron Coupling:''' Interaction mechanism between high-frequency phonons and electrons in materials. ---- == Environmental Alignment == === Schumann Resonance Frequencies === {| class="wikitable" |+ Schumann Resonance Modes |- ! Mode !! Frequency (Hz) !! Wavelength (km) |- | 1 || ~7.83 || ~38,300 |- | 2 || ~14.3 || ~21,000 |- | 3 || ~20.8 || ~14,400 |- | 4 || ~27.3 || ~11,000 |- | 5 || ~33.8 || ~8,900 |} * '''Variability:''' Frequencies can shift by ±0.5 Hz due to ionospheric conditions. === Geomagnetic Pulsation Frequencies === {| class="wikitable" |+ Geomagnetic Pulsations |- ! Category !! Frequency Range !! Associated Phenomena |- | Pc1 || 0.2–5.0 Hz || Electromagnetic ion cyclotron waves |- | Pc2 || 5–10 mHz || Field line resonances |- | Pc3 || 10–45 mHz || Cavity modes in the magnetosphere |- | Pc4 || 45–150 mHz || Large-scale magnetospheric oscillations |- | Pc5 || 1–7 mHz || Solar wind coupling effects |} ---- == Mathematical Modeling == === System Dynamics Equations === '''Core Motion Equations:''' <math>m \ddot{\mathbf{x}} = \mathbf{F}_{\text{mag}}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{I}) + \mathbf{F}_{\text{elec}}(\mathbf{x}, \dot{\mathbf{x}}, Q) + \mathbf{F}_{\text{dist}}</math> * ''<math>\ddot{\mathbf{x}}</math>'': Acceleration * ''<math>\mathbf{I}</math>'': Coil currents '''State-Space Representation:''' <math> \begin{cases} \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{v}} = \frac{1}{m} \left( \mathbf{F}_{\text{mag}} + \mathbf{F}_{\text{elec}} + \mathbf{F}_{\text{dist}} \right) \\ \dot{\boldsymbol{\theta}} = \boldsymbol{\omega} \\ \dot{\boldsymbol{\omega}} = \mathbf{I}^{-1} \left( \boldsymbol{\tau}_{\text{mag}} + \boldsymbol{\tau}_{\text{elec}} + \boldsymbol{\tau}_{\text{dist}} \right) \end{cases} </math> * ''<math>\boldsymbol{\theta}</math>'': Orientation angles * ''<math>\boldsymbol{\omega}</math>'': Angular velocities * ''<math>\boldsymbol{\tau}</math>''<sub>mag</sub>, ''<math>\boldsymbol{\tau}</math>''<sub>elec</sub>: Magnetic and electrostatic torques * ''<math>\mathbf{I}</math>'': Moment of inertia tensor '''Sliding Surface for Adaptive Sliding Mode Control (ASMC):''' <math>s(t) = e(t) + \lambda \int_{0}^{t} e(\tau) d\tau</math> '''Control Law for ASMC:''' <math>u(t) = -k \cdot \text{sign}(s(t)) + \dot{q}_{\text{ref}}(t)</math> ---- == Control Algorithms Parameters == '''Parameters Definitions:''' * ''m'': Mass of the core * ''<math>\mathbf{x}</math>'', ''<math>\mathbf{v}</math>'': Position and velocity vectors * ''<math>\boldsymbol{\theta}</math>'', ''<math>\boldsymbol{\omega}</math>'': Orientation and angular velocity vectors * ''<math>\mathbf{F}</math>''<sub>mag</sub>, ''<math>\mathbf{F}</math>''<sub>elec</sub>: Magnetic and electrostatic forces * ''<math>\mathbf{F}</math>''<sub>dist</sub>: Disturbance forces * ''<math>\mathbf{I}</math>'': Moment of inertia tensor * ''<math>\boldsymbol{\tau}</math>''<sub>mag</sub>, ''<math>\boldsymbol{\tau}</math>''<sub>elec</sub>: Magnetic and electrostatic torques * ''e(t)'': Error signal * ''<math>\lambda</math>'': Positive constant for sliding surface * ''k'': Adaptive gain for control law * ''<math>\mathbf{u}(t)</math>'': Control input vector ---- == Key Constants and Physical Quantities == * '''Planck's Constant (''h''):''' <math>(6.62607015 \times 10^{-34}) Js</math> * '''Reduced Planck's Constant (''<math>\hbar </math>''):''' <math>(\frac{h}{2\pi})</math> * '''Speed of Light (''c''):''' <math>(3.0 \times 10^8) m/s </math> * '''Elementary Charge (''e''):''' <math>(1.602176634 \times 10^{-19}) C </math> * '''Vacuum Permittivity (''<math>\epsilon_0 </math>''):''' <math>(8.854187817 \times 10^{-12}) F/m </math> ---- This document compiles all the mathematical equations, values, and data relevant to the MHD Core project, providing a comprehensive reference for team members and stakeholders.
Summary:
Please note that all contributions to FusionGirl Wiki are considered to be released under the Creative Commons Attribution (see
FusionGirl Wiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Page actions
Page
Discussion
Read
Edit
Edit source
History
Page actions
Page
Discussion
More
Tools
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Search
Tools
What links here
Related changes
Special pages
Page information