MHD Core: Difference between revisions

From FusionGirl Wiki
Jump to navigationJump to search
(Created page with "https://github.com/Jthora/MHD-Core")
 
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[MHD Tech]]
[[Magnetohydrodynamics]]
Magneto Hydro Dynamic Core
A Levitation Power Core
Fundimental Technology for the operation of a [[Star Speeder]] and [[Magneto Speeder]]
https://github.com/Jthora/MHD-Core
https://github.com/Jthora/MHD-Core
= MHD Core Project: Mathematical Equations and Data =
This document compiles all the mathematical equations, values, and data discussed in the MHD Core project presentations.
----
== Theoretical Foundations ==
=== Quantum Field Theorist's Equations ===
'''Zero-Point Energy of a Quantum Harmonic Oscillator:'''
<math>E = \frac{1}{2} \hbar \omega</math>
* ''E'': Zero-point energy
* ''<math>\hbar</math>'': Reduced Planck's constant
* ''<math>\omega</math>'': Angular frequency
'''Casimir Effect Force Between Two Plates:'''
<math>F_{\text{Casimir}} = \frac{\pi^2 \hbar c}{240} \frac{A}{L^4}</math>
* ''F''<sub>Casimir</sub>: Casimir force
* ''c'': Speed of light
* ''A'': Area of the plates
* ''L'': Separation between the plates
'''Dynamic Casimir Effect Photon Generation Rate:'''
<math>\Gamma = \frac{\pi \omega_{\text{cavity}}^2}{3c^2} \left( \frac{\Delta L}{L} \right)^2</math>
* ''<math>\Gamma</math>'': Photon generation rate
* ''<math>\omega</math>''<sub>cavity</sub>: Resonant frequency of the cavity
* ''<math>\Delta L</math>'': Modulation amplitude of cavity length
* ''<math>L</math>'': Original cavity length
'''Expectation Value of the Energy-Momentum Tensor:'''
<math>\langle T_{\mu\nu} \rangle = -\frac{\hbar c}{720 \pi^2} \frac{1}{L^4} g_{\mu\nu}</math>
* ''T''<sub>μν</sub>: Energy-momentum tensor
* ''g''<sub>μν</sub>: Metric tensor of spacetime
----
=== Electromagnetic Field Specialist's Equations ===
'''Modified Wave Equation with Scalar Potential:'''
<math>\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -\frac{\rho}{\epsilon_0}</math>
* ''<math>\phi</math>'': Scalar potential
* ''<math>\rho</math>'': Charge density
* ''<math>\epsilon_0</math>'': Vacuum permittivity
'''Magnetic Flux Quantum:'''
<math>\Phi_0 = \frac{h}{2e}</math>
* ''<math>\Phi</math>''<sub>0</sub>: Magnetic flux quantum
* ''h'': Planck's constant
* ''e'': Elementary charge
----
== Material Development ==
=== Superconducting Material Properties ===
'''Yttrium Barium Copper Oxide (YBCO):'''
* '''Critical Temperature (''T''<sub>c</sub>):''' Approximately 92 K
* '''Critical Current Density (''J''<sub>c</sub>):''' Exceeding <math>(1 \times 10^6)</math> A/cm² at 77 K
'''Barium Zirconate Nanoparticles Enhancement:'''
* '''Increase in Critical Current Density:''' 30% under high magnetic fields
----
=== Quantum Behaviors in Superconducting Materials ===
'''Cooper Pair Formation:'''
* Electrons form bound pairs enabling zero electrical resistance.
'''Flux Quantization Equation:'''
<math>\Phi = n \Phi_0</math>
* ''<math>\Phi</math>'': Magnetic flux through a superconducting loop
* ''n'': Integer (quantum number)
* ''<math>\Phi</math>''<sub>0</sub>: Magnetic flux quantum <math>(\Phi_0 = \frac{h}{2e})</math>
'''Energy Gap in Superconductors:'''
<math>\Delta E = 2\Delta</math>
* ''<math>\Delta E</math>'': Energy required to break a Cooper pair
* ''<math>\Delta</math>'': Energy gap parameter
----
== Engineering Design ==
=== Levitation System Equations ===
'''Magnetic Force Equation:'''
<math>\mathbf{F}_{\text{mag}} = \nabla (\mathbf{m} \cdot \mathbf{B})</math>
* ''<math>\mathbf{F}</math>''<sub>mag</sub>: Magnetic force
* ''<math>\mathbf{m}</math>'': Magnetic moment
* ''<math>\mathbf{B}</math>'': Magnetic field
'''Electrostatic Force Equation:'''
<math>\mathbf{F}_{\text{elec}} = Q \mathbf{E}</math>
* ''<math>\mathbf{F}</math>''<sub>elec</sub>: Electrostatic force
* ''Q'': Electric charge
* ''<math>\mathbf{E}</math>'': Electric field
----
== Control Systems and Simulations ==
=== Levitation Control Equations ===
'''State Equations:'''
<math>
\begin{cases}
\dot{\mathbf{x}} = \mathbf{v} \\
\dot{\mathbf{v}} = \frac{1}{m} \left( \mathbf{F}_{\text{mag}} + \mathbf{F}_{\text{elec}} + \mathbf{F}_{\text{dist}} \right)
\end{cases}
</math>
* ''<math>\mathbf{x}</math>'': Position vector
* ''<math>\mathbf{v}</math>'': Velocity vector
* ''m'': Mass of the core
* ''<math>\mathbf{F}</math>''<sub>dist</sub>: Disturbance force
'''Cost Function for Nonlinear Model Predictive Control (NMPC):'''
<math>J = \int_{t}^{t+T_p} \left[ \|\mathbf{x}_{\text{ref}}(t) - \mathbf{x}(t)\|_Q^2 + \|\mathbf{u}(t)\|_R^2 \right] dt</math>
* ''J'': Cost function
* ''T''<sub>p</sub>: Prediction horizon
* ''<math>\mathbf{x}</math>''<sub>ref</sub>: Reference position
* ''<math>\mathbf{u}</math>'': Control input
* ''Q'', ''R'': Weighting matrices
=== Charge Regulation Equations ===
'''Sliding Surface Definition:'''
<math>s(t) = e(t) + \lambda \int_{0}^{t} e(\tau) d\tau</math>
* ''s(t)'': Sliding surface
* ''e(t) = q_{\text{ref}}(t) - q(t)'': Charge error
* ''<math>\lambda</math>'': Positive constant
'''Control Law:'''
<math>u(t) = -k \cdot \text{sign}(s(t)) + \dot{q}_{\text{ref}}(t)</math>
* ''u(t)'': Control input
* ''k'': Adaptive gain
* ''sign(s(t))'': Sign function
----
== Acoustic Integration ==
=== Hypersound Frequencies and Phonon Interactions ===
* '''Hypersound Frequency Range:''' Above 1 GHz
* '''Phonon-Electron Coupling:''' Interaction mechanism between high-frequency phonons and electrons in materials.
----
== Environmental Alignment ==
=== Schumann Resonance Frequencies ===
{| class="wikitable"
|+ Schumann Resonance Modes
|-
! Mode !! Frequency (Hz) !! Wavelength (km)
|-
| 1 || ~7.83 || ~38,300
|-
| 2 || ~14.3 || ~21,000
|-
| 3 || ~20.8 || ~14,400
|-
| 4 || ~27.3 || ~11,000
|-
| 5 || ~33.8 || ~8,900
|}
* '''Variability:''' Frequencies can shift by ±0.5 Hz due to ionospheric conditions.
=== Geomagnetic Pulsation Frequencies ===
{| class="wikitable"
|+ Geomagnetic Pulsations
|-
! Category !! Frequency Range !! Associated Phenomena
|-
| Pc1 || 0.2–5.0 Hz || Electromagnetic ion cyclotron waves
|-
| Pc2 || 5–10 mHz || Field line resonances
|-
| Pc3 || 10–45 mHz || Cavity modes in the magnetosphere
|-
| Pc4 || 45–150 mHz || Large-scale magnetospheric oscillations
|-
| Pc5 || 1–7 mHz || Solar wind coupling effects
|}
----
== Mathematical Modeling ==
=== System Dynamics Equations ===
'''Core Motion Equations:'''
<math>m \ddot{\mathbf{x}} = \mathbf{F}_{\text{mag}}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{I}) + \mathbf{F}_{\text{elec}}(\mathbf{x}, \dot{\mathbf{x}}, Q) + \mathbf{F}_{\text{dist}}</math>
* ''<math>\ddot{\mathbf{x}}</math>'': Acceleration
* ''<math>\mathbf{I}</math>'': Coil currents
'''State-Space Representation:'''
<math>
\begin{cases}
\dot{\mathbf{x}} = \mathbf{v} \\
\dot{\mathbf{v}} = \frac{1}{m} \left( \mathbf{F}_{\text{mag}} + \mathbf{F}_{\text{elec}} + \mathbf{F}_{\text{dist}} \right) \\
\dot{\boldsymbol{\theta}} = \boldsymbol{\omega} \\
\dot{\boldsymbol{\omega}} = \mathbf{I}^{-1} \left( \boldsymbol{\tau}_{\text{mag}} + \boldsymbol{\tau}_{\text{elec}} + \boldsymbol{\tau}_{\text{dist}} \right)
\end{cases}
</math>
* ''<math>\boldsymbol{\theta}</math>'': Orientation angles
* ''<math>\boldsymbol{\omega}</math>'': Angular velocities
* ''<math>\boldsymbol{\tau}</math>''<sub>mag</sub>, ''<math>\boldsymbol{\tau}</math>''<sub>elec</sub>: Magnetic and electrostatic torques
* ''<math>\mathbf{I}</math>'': Moment of inertia tensor
'''Sliding Surface for Adaptive Sliding Mode Control (ASMC):'''
<math>s(t) = e(t) + \lambda \int_{0}^{t} e(\tau) d\tau</math>
'''Control Law for ASMC:'''
<math>u(t) = -k \cdot \text{sign}(s(t)) + \dot{q}_{\text{ref}}(t)</math>
----
== Control Algorithms Parameters ==
'''Parameters Definitions:'''
* ''m'': Mass of the core
* ''<math>\mathbf{x}</math>'', ''<math>\mathbf{v}</math>'': Position and velocity vectors
* ''<math>\boldsymbol{\theta}</math>'', ''<math>\boldsymbol{\omega}</math>'': Orientation and angular velocity vectors
* ''<math>\mathbf{F}</math>''<sub>mag</sub>, ''<math>\mathbf{F}</math>''<sub>elec</sub>: Magnetic and electrostatic forces
* ''<math>\mathbf{F}</math>''<sub>dist</sub>: Disturbance forces
* ''<math>\mathbf{I}</math>'': Moment of inertia tensor
* ''<math>\boldsymbol{\tau}</math>''<sub>mag</sub>, ''<math>\boldsymbol{\tau}</math>''<sub>elec</sub>: Magnetic and electrostatic torques
* ''e(t)'': Error signal
* ''<math>\lambda</math>'': Positive constant for sliding surface
* ''k'': Adaptive gain for control law
* ''<math>\mathbf{u}(t)</math>'': Control input vector
----
== Key Constants and Physical Quantities ==
* '''Planck's Constant (''h''):''' <math>(6.62607015 \times 10^{-34}) Js</math>
* '''Reduced Planck's Constant (''<math>\hbar </math>''):''' <math>(\frac{h}{2\pi})</math>
* '''Speed of Light (''c''):''' <math>(3.0 \times 10^8) m/s </math>
* '''Elementary Charge (''e''):''' <math>(1.602176634 \times 10^{-19}) C </math>
* '''Vacuum Permittivity (''<math>\epsilon_0 </math>''):''' <math>(8.854187817 \times 10^{-12}) F/m </math>
----
This document compiles all the mathematical equations, values, and data relevant to the MHD Core project, providing a comprehensive reference for team members and stakeholders.

Latest revision as of 10:08, 10 November 2024

MHD Tech

Magnetohydrodynamics

Magneto Hydro Dynamic Core

A Levitation Power Core

Fundimental Technology for the operation of a Star Speeder and Magneto Speeder



https://github.com/Jthora/MHD-Core


MHD Core Project: Mathematical Equations and Data[edit | edit source]

This document compiles all the mathematical equations, values, and data discussed in the MHD Core project presentations.


Theoretical Foundations[edit | edit source]

Quantum Field Theorist's Equations[edit | edit source]

Zero-Point Energy of a Quantum Harmonic Oscillator:

  • E: Zero-point energy
  • : Reduced Planck's constant
  • : Angular frequency

Casimir Effect Force Between Two Plates:

  • FCasimir: Casimir force
  • c: Speed of light
  • A: Area of the plates
  • L: Separation between the plates

Dynamic Casimir Effect Photon Generation Rate:

  • : Photon generation rate
  • cavity: Resonant frequency of the cavity
  • : Modulation amplitude of cavity length
  • : Original cavity length

Expectation Value of the Energy-Momentum Tensor:

  • Tμν: Energy-momentum tensor
  • gμν: Metric tensor of spacetime

Electromagnetic Field Specialist's Equations[edit | edit source]

Modified Wave Equation with Scalar Potential:

  • : Scalar potential
  • : Charge density
  • : Vacuum permittivity

Magnetic Flux Quantum:

  • 0: Magnetic flux quantum
  • h: Planck's constant
  • e: Elementary charge

Material Development[edit | edit source]

Superconducting Material Properties[edit | edit source]

Yttrium Barium Copper Oxide (YBCO):

  • Critical Temperature (Tc): Approximately 92 K
  • Critical Current Density (Jc): Exceeding A/cm² at 77 K

Barium Zirconate Nanoparticles Enhancement:

  • Increase in Critical Current Density: 30% under high magnetic fields

Quantum Behaviors in Superconducting Materials[edit | edit source]

Cooper Pair Formation:

  • Electrons form bound pairs enabling zero electrical resistance.

Flux Quantization Equation:

  • : Magnetic flux through a superconducting loop
  • n: Integer (quantum number)
  • 0: Magnetic flux quantum

Energy Gap in Superconductors:

  • : Energy required to break a Cooper pair
  • : Energy gap parameter

Engineering Design[edit | edit source]

Levitation System Equations[edit | edit source]

Magnetic Force Equation:

  • mag: Magnetic force
  • : Magnetic moment
  • : Magnetic field

Electrostatic Force Equation:

  • elec: Electrostatic force
  • Q: Electric charge
  • : Electric field

Control Systems and Simulations[edit | edit source]

Levitation Control Equations[edit | edit source]

State Equations:

  • : Position vector
  • : Velocity vector
  • m: Mass of the core
  • dist: Disturbance force

Cost Function for Nonlinear Model Predictive Control (NMPC):

  • J: Cost function
  • Tp: Prediction horizon
  • ref: Reference position
  • : Control input
  • Q, R: Weighting matrices

Charge Regulation Equations[edit | edit source]

Sliding Surface Definition:

  • s(t): Sliding surface
  • e(t) = q_{\text{ref}}(t) - q(t): Charge error
  • : Positive constant

Control Law:

  • u(t): Control input
  • k: Adaptive gain
  • sign(s(t)): Sign function

Acoustic Integration[edit | edit source]

Hypersound Frequencies and Phonon Interactions[edit | edit source]

  • Hypersound Frequency Range: Above 1 GHz
  • Phonon-Electron Coupling: Interaction mechanism between high-frequency phonons and electrons in materials.

Environmental Alignment[edit | edit source]

Schumann Resonance Frequencies[edit | edit source]

Schumann Resonance Modes
Mode Frequency (Hz) Wavelength (km)
1 ~7.83 ~38,300
2 ~14.3 ~21,000
3 ~20.8 ~14,400
4 ~27.3 ~11,000
5 ~33.8 ~8,900
  • Variability: Frequencies can shift by ±0.5 Hz due to ionospheric conditions.

Geomagnetic Pulsation Frequencies[edit | edit source]

Geomagnetic Pulsations
Category Frequency Range Associated Phenomena
Pc1 0.2–5.0 Hz Electromagnetic ion cyclotron waves
Pc2 5–10 mHz Field line resonances
Pc3 10–45 mHz Cavity modes in the magnetosphere
Pc4 45–150 mHz Large-scale magnetospheric oscillations
Pc5 1–7 mHz Solar wind coupling effects

Mathematical Modeling[edit | edit source]

System Dynamics Equations[edit | edit source]

Core Motion Equations:

  • : Acceleration
  • : Coil currents

State-Space Representation:

  • : Orientation angles
  • : Angular velocities
  • mag, elec: Magnetic and electrostatic torques
  • : Moment of inertia tensor

Sliding Surface for Adaptive Sliding Mode Control (ASMC):

Control Law for ASMC:


Control Algorithms Parameters[edit | edit source]

Parameters Definitions:

  • m: Mass of the core
  • , : Position and velocity vectors
  • , : Orientation and angular velocity vectors
  • mag, elec: Magnetic and electrostatic forces
  • dist: Disturbance forces
  • : Moment of inertia tensor
  • mag, elec: Magnetic and electrostatic torques
  • e(t): Error signal
  • : Positive constant for sliding surface
  • k: Adaptive gain for control law
  • : Control input vector

Key Constants and Physical Quantities[edit | edit source]

  • Planck's Constant (h):
  • Reduced Planck's Constant ():
  • Speed of Light (c):
  • Elementary Charge (e):
  • Vacuum Permittivity ():

This document compiles all the mathematical equations, values, and data relevant to the MHD Core project, providing a comprehensive reference for team members and stakeholders.