MHD Core: Difference between revisions
No edit summary |
|||
(13 intermediate revisions by the same user not shown) | |||
Line 13: | Line 13: | ||
https://github.com/Jthora/MHD-Core | https://github.com/Jthora/MHD-Core | ||
= MHD Core Project: Mathematical Equations and Data = | |||
This document compiles all the mathematical equations, values, and data discussed in the MHD Core project presentations. | |||
---- | |||
== Theoretical Foundations == | |||
=== Quantum Field Theorist's Equations === | |||
'''Zero-Point Energy of a Quantum Harmonic Oscillator:''' | |||
<math>E = \frac{1}{2} \hbar \omega</math> | |||
* ''E'': Zero-point energy | |||
* ''<math>\hbar</math>'': Reduced Planck's constant | |||
* ''<math>\omega</math>'': Angular frequency | |||
'''Casimir Effect Force Between Two Plates:''' | |||
<math>F_{\text{Casimir}} = \frac{\pi^2 \hbar c}{240} \frac{A}{L^4}</math> | |||
* ''F''<sub>Casimir</sub>: Casimir force | |||
* ''c'': Speed of light | |||
* ''A'': Area of the plates | |||
* ''L'': Separation between the plates | |||
'''Dynamic Casimir Effect Photon Generation Rate:''' | |||
<math>\Gamma = \frac{\pi \omega_{\text{cavity}}^2}{3c^2} \left( \frac{\Delta L}{L} \right)^2</math> | |||
* ''<math>\Gamma</math>'': Photon generation rate | |||
* ''<math>\omega</math>''<sub>cavity</sub>: Resonant frequency of the cavity | |||
* ''<math>\Delta L</math>'': Modulation amplitude of cavity length | |||
* ''<math>L</math>'': Original cavity length | |||
'''Expectation Value of the Energy-Momentum Tensor:''' | |||
<math>\langle T_{\mu\nu} \rangle = -\frac{\hbar c}{720 \pi^2} \frac{1}{L^4} g_{\mu\nu}</math> | |||
* ''T''<sub>μν</sub>: Energy-momentum tensor | |||
* ''g''<sub>μν</sub>: Metric tensor of spacetime | |||
---- | |||
=== Electromagnetic Field Specialist's Equations === | |||
'''Modified Wave Equation with Scalar Potential:''' | |||
<math>\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -\frac{\rho}{\epsilon_0}</math> | |||
* ''<math>\phi</math>'': Scalar potential | |||
* ''<math>\rho</math>'': Charge density | |||
* ''<math>\epsilon_0</math>'': Vacuum permittivity | |||
'''Magnetic Flux Quantum:''' | |||
<math>\Phi_0 = \frac{h}{2e}</math> | |||
* ''<math>\Phi</math>''<sub>0</sub>: Magnetic flux quantum | |||
* ''h'': Planck's constant | |||
* ''e'': Elementary charge | |||
---- | |||
== Material Development == | |||
=== Superconducting Material Properties === | |||
'''Yttrium Barium Copper Oxide (YBCO):''' | |||
* '''Critical Temperature (''T''<sub>c</sub>):''' Approximately 92 K | |||
* '''Critical Current Density (''J''<sub>c</sub>):''' Exceeding <math>(1 \times 10^6)</math> A/cm² at 77 K | |||
'''Barium Zirconate Nanoparticles Enhancement:''' | |||
* '''Increase in Critical Current Density:''' 30% under high magnetic fields | |||
---- | |||
=== Quantum Behaviors in Superconducting Materials === | |||
'''Cooper Pair Formation:''' | |||
* Electrons form bound pairs enabling zero electrical resistance. | |||
'''Flux Quantization Equation:''' | |||
<math>\Phi = n \Phi_0</math> | |||
* ''<math>\Phi</math>'': Magnetic flux through a superconducting loop | |||
* ''n'': Integer (quantum number) | |||
* ''<math>\Phi</math>''<sub>0</sub>: Magnetic flux quantum <math>(\Phi_0 = \frac{h}{2e})</math> | |||
'''Energy Gap in Superconductors:''' | |||
<math>\Delta E = 2\Delta</math> | |||
* ''<math>\Delta E</math>'': Energy required to break a Cooper pair | |||
* ''<math>\Delta</math>'': Energy gap parameter | |||
---- | |||
== Engineering Design == | |||
=== Levitation System Equations === | |||
'''Magnetic Force Equation:''' | |||
<math>\mathbf{F}_{\text{mag}} = \nabla (\mathbf{m} \cdot \mathbf{B})</math> | |||
* ''<math>\mathbf{F}</math>''<sub>mag</sub>: Magnetic force | |||
* ''<math>\mathbf{m}</math>'': Magnetic moment | |||
* ''<math>\mathbf{B}</math>'': Magnetic field | |||
'''Electrostatic Force Equation:''' | |||
<math>\mathbf{F}_{\text{elec}} = Q \mathbf{E}</math> | |||
* ''<math>\mathbf{F}</math>''<sub>elec</sub>: Electrostatic force | |||
* ''Q'': Electric charge | |||
* ''<math>\mathbf{E}</math>'': Electric field | |||
---- | |||
== Control Systems and Simulations == | |||
=== Levitation Control Equations === | |||
'''State Equations:''' | |||
<math> | |||
\begin{cases} | |||
\dot{\mathbf{x}} = \mathbf{v} \\ | |||
\dot{\mathbf{v}} = \frac{1}{m} \left( \mathbf{F}_{\text{mag}} + \mathbf{F}_{\text{elec}} + \mathbf{F}_{\text{dist}} \right) | |||
\end{cases} | |||
</math> | |||
* ''<math>\mathbf{x}</math>'': Position vector | |||
* ''<math>\mathbf{v}</math>'': Velocity vector | |||
* ''m'': Mass of the core | |||
* ''<math>\mathbf{F}</math>''<sub>dist</sub>: Disturbance force | |||
'''Cost Function for Nonlinear Model Predictive Control (NMPC):''' | |||
<math>J = \int_{t}^{t+T_p} \left[ \|\mathbf{x}_{\text{ref}}(t) - \mathbf{x}(t)\|_Q^2 + \|\mathbf{u}(t)\|_R^2 \right] dt</math> | |||
* ''J'': Cost function | |||
* ''T''<sub>p</sub>: Prediction horizon | |||
* ''<math>\mathbf{x}</math>''<sub>ref</sub>: Reference position | |||
* ''<math>\mathbf{u}</math>'': Control input | |||
* ''Q'', ''R'': Weighting matrices | |||
=== Charge Regulation Equations === | |||
'''Sliding Surface Definition:''' | |||
<math>s(t) = e(t) + \lambda \int_{0}^{t} e(\tau) d\tau</math> | |||
* ''s(t)'': Sliding surface | |||
* ''e(t) = q_{\text{ref}}(t) - q(t)'': Charge error | |||
* ''<math>\lambda</math>'': Positive constant | |||
'''Control Law:''' | |||
<math>u(t) = -k \cdot \text{sign}(s(t)) + \dot{q}_{\text{ref}}(t)</math> | |||
* ''u(t)'': Control input | |||
* ''k'': Adaptive gain | |||
* ''sign(s(t))'': Sign function | |||
---- | |||
== Acoustic Integration == | |||
=== Hypersound Frequencies and Phonon Interactions === | |||
* '''Hypersound Frequency Range:''' Above 1 GHz | |||
* '''Phonon-Electron Coupling:''' Interaction mechanism between high-frequency phonons and electrons in materials. | |||
---- | |||
== Environmental Alignment == | |||
=== Schumann Resonance Frequencies === | |||
{| class="wikitable" | |||
|+ Schumann Resonance Modes | |||
|- | |||
! Mode !! Frequency (Hz) !! Wavelength (km) | |||
|- | |||
| 1 || ~7.83 || ~38,300 | |||
|- | |||
| 2 || ~14.3 || ~21,000 | |||
|- | |||
| 3 || ~20.8 || ~14,400 | |||
|- | |||
| 4 || ~27.3 || ~11,000 | |||
|- | |||
| 5 || ~33.8 || ~8,900 | |||
|} | |||
* '''Variability:''' Frequencies can shift by ±0.5 Hz due to ionospheric conditions. | |||
=== Geomagnetic Pulsation Frequencies === | |||
{| class="wikitable" | |||
|+ Geomagnetic Pulsations | |||
|- | |||
! Category !! Frequency Range !! Associated Phenomena | |||
|- | |||
| Pc1 || 0.2–5.0 Hz || Electromagnetic ion cyclotron waves | |||
|- | |||
| Pc2 || 5–10 mHz || Field line resonances | |||
|- | |||
| Pc3 || 10–45 mHz || Cavity modes in the magnetosphere | |||
|- | |||
| Pc4 || 45–150 mHz || Large-scale magnetospheric oscillations | |||
|- | |||
| Pc5 || 1–7 mHz || Solar wind coupling effects | |||
|} | |||
---- | |||
== Mathematical Modeling == | |||
=== System Dynamics Equations === | |||
'''Core Motion Equations:''' | |||
<math>m \ddot{\mathbf{x}} = \mathbf{F}_{\text{mag}}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{I}) + \mathbf{F}_{\text{elec}}(\mathbf{x}, \dot{\mathbf{x}}, Q) + \mathbf{F}_{\text{dist}}</math> | |||
* ''<math>\ddot{\mathbf{x}}</math>'': Acceleration | |||
* ''<math>\mathbf{I}</math>'': Coil currents | |||
'''State-Space Representation:''' | |||
<math> | |||
\begin{cases} | |||
\dot{\mathbf{x}} = \mathbf{v} \\ | |||
\dot{\mathbf{v}} = \frac{1}{m} \left( \mathbf{F}_{\text{mag}} + \mathbf{F}_{\text{elec}} + \mathbf{F}_{\text{dist}} \right) \\ | |||
\dot{\boldsymbol{\theta}} = \boldsymbol{\omega} \\ | |||
\dot{\boldsymbol{\omega}} = \mathbf{I}^{-1} \left( \boldsymbol{\tau}_{\text{mag}} + \boldsymbol{\tau}_{\text{elec}} + \boldsymbol{\tau}_{\text{dist}} \right) | |||
\end{cases} | |||
</math> | |||
* ''<math>\boldsymbol{\theta}</math>'': Orientation angles | |||
* ''<math>\boldsymbol{\omega}</math>'': Angular velocities | |||
* ''<math>\boldsymbol{\tau}</math>''<sub>mag</sub>, ''<math>\boldsymbol{\tau}</math>''<sub>elec</sub>: Magnetic and electrostatic torques | |||
* ''<math>\mathbf{I}</math>'': Moment of inertia tensor | |||
'''Sliding Surface for Adaptive Sliding Mode Control (ASMC):''' | |||
<math>s(t) = e(t) + \lambda \int_{0}^{t} e(\tau) d\tau</math> | |||
'''Control Law for ASMC:''' | |||
<math>u(t) = -k \cdot \text{sign}(s(t)) + \dot{q}_{\text{ref}}(t)</math> | |||
---- | |||
== Control Algorithms Parameters == | |||
'''Parameters Definitions:''' | |||
* ''m'': Mass of the core | |||
* ''<math>\mathbf{x}</math>'', ''<math>\mathbf{v}</math>'': Position and velocity vectors | |||
* ''<math>\boldsymbol{\theta}</math>'', ''<math>\boldsymbol{\omega}</math>'': Orientation and angular velocity vectors | |||
* ''<math>\mathbf{F}</math>''<sub>mag</sub>, ''<math>\mathbf{F}</math>''<sub>elec</sub>: Magnetic and electrostatic forces | |||
* ''<math>\mathbf{F}</math>''<sub>dist</sub>: Disturbance forces | |||
* ''<math>\mathbf{I}</math>'': Moment of inertia tensor | |||
* ''<math>\boldsymbol{\tau}</math>''<sub>mag</sub>, ''<math>\boldsymbol{\tau}</math>''<sub>elec</sub>: Magnetic and electrostatic torques | |||
* ''e(t)'': Error signal | |||
* ''<math>\lambda</math>'': Positive constant for sliding surface | |||
* ''k'': Adaptive gain for control law | |||
* ''<math>\mathbf{u}(t)</math>'': Control input vector | |||
---- | |||
== Key Constants and Physical Quantities == | |||
* '''Planck's Constant (''h''):''' <math>(6.62607015 \times 10^{-34}) Js</math> | |||
* '''Reduced Planck's Constant (''<math>\hbar </math>''):''' <math>(\frac{h}{2\pi})</math> | |||
* '''Speed of Light (''c''):''' <math>(3.0 \times 10^8) m/s </math> | |||
* '''Elementary Charge (''e''):''' <math>(1.602176634 \times 10^{-19}) C </math> | |||
* '''Vacuum Permittivity (''<math>\epsilon_0 </math>''):''' <math>(8.854187817 \times 10^{-12}) F/m </math> | |||
---- | |||
This document compiles all the mathematical equations, values, and data relevant to the MHD Core project, providing a comprehensive reference for team members and stakeholders. |
Latest revision as of 10:08, 10 November 2024
Magneto Hydro Dynamic Core
A Levitation Power Core
Fundimental Technology for the operation of a Star Speeder and Magneto Speeder
https://github.com/Jthora/MHD-Core
MHD Core Project: Mathematical Equations and Data[edit | edit source]
This document compiles all the mathematical equations, values, and data discussed in the MHD Core project presentations.
Theoretical Foundations[edit | edit source]
Quantum Field Theorist's Equations[edit | edit source]
Zero-Point Energy of a Quantum Harmonic Oscillator:
- E: Zero-point energy
- : Reduced Planck's constant
- : Angular frequency
Casimir Effect Force Between Two Plates:
- FCasimir: Casimir force
- c: Speed of light
- A: Area of the plates
- L: Separation between the plates
Dynamic Casimir Effect Photon Generation Rate:
- : Photon generation rate
- cavity: Resonant frequency of the cavity
- : Modulation amplitude of cavity length
- : Original cavity length
Expectation Value of the Energy-Momentum Tensor:
- Tμν: Energy-momentum tensor
- gμν: Metric tensor of spacetime
Electromagnetic Field Specialist's Equations[edit | edit source]
Modified Wave Equation with Scalar Potential:
- : Scalar potential
- : Charge density
- : Vacuum permittivity
Magnetic Flux Quantum:
- 0: Magnetic flux quantum
- h: Planck's constant
- e: Elementary charge
Material Development[edit | edit source]
Superconducting Material Properties[edit | edit source]
Yttrium Barium Copper Oxide (YBCO):
- Critical Temperature (Tc): Approximately 92 K
- Critical Current Density (Jc): Exceeding A/cm² at 77 K
Barium Zirconate Nanoparticles Enhancement:
- Increase in Critical Current Density: 30% under high magnetic fields
Quantum Behaviors in Superconducting Materials[edit | edit source]
Cooper Pair Formation:
- Electrons form bound pairs enabling zero electrical resistance.
Flux Quantization Equation:
- : Magnetic flux through a superconducting loop
- n: Integer (quantum number)
- 0: Magnetic flux quantum
Energy Gap in Superconductors:
- : Energy required to break a Cooper pair
- : Energy gap parameter
Engineering Design[edit | edit source]
Levitation System Equations[edit | edit source]
Magnetic Force Equation:
- mag: Magnetic force
- : Magnetic moment
- : Magnetic field
Electrostatic Force Equation:
- elec: Electrostatic force
- Q: Electric charge
- : Electric field
Control Systems and Simulations[edit | edit source]
Levitation Control Equations[edit | edit source]
State Equations:
- : Position vector
- : Velocity vector
- m: Mass of the core
- dist: Disturbance force
Cost Function for Nonlinear Model Predictive Control (NMPC):
- J: Cost function
- Tp: Prediction horizon
- ref: Reference position
- : Control input
- Q, R: Weighting matrices
Charge Regulation Equations[edit | edit source]
Sliding Surface Definition:
- s(t): Sliding surface
- e(t) = q_{\text{ref}}(t) - q(t): Charge error
- : Positive constant
Control Law:
- u(t): Control input
- k: Adaptive gain
- sign(s(t)): Sign function
Acoustic Integration[edit | edit source]
Hypersound Frequencies and Phonon Interactions[edit | edit source]
- Hypersound Frequency Range: Above 1 GHz
- Phonon-Electron Coupling: Interaction mechanism between high-frequency phonons and electrons in materials.
Environmental Alignment[edit | edit source]
Schumann Resonance Frequencies[edit | edit source]
Mode | Frequency (Hz) | Wavelength (km) |
---|---|---|
1 | ~7.83 | ~38,300 |
2 | ~14.3 | ~21,000 |
3 | ~20.8 | ~14,400 |
4 | ~27.3 | ~11,000 |
5 | ~33.8 | ~8,900 |
- Variability: Frequencies can shift by ±0.5 Hz due to ionospheric conditions.
Geomagnetic Pulsation Frequencies[edit | edit source]
Category | Frequency Range | Associated Phenomena |
---|---|---|
Pc1 | 0.2–5.0 Hz | Electromagnetic ion cyclotron waves |
Pc2 | 5–10 mHz | Field line resonances |
Pc3 | 10–45 mHz | Cavity modes in the magnetosphere |
Pc4 | 45–150 mHz | Large-scale magnetospheric oscillations |
Pc5 | 1–7 mHz | Solar wind coupling effects |
Mathematical Modeling[edit | edit source]
System Dynamics Equations[edit | edit source]
Core Motion Equations:
- : Acceleration
- : Coil currents
State-Space Representation:
- : Orientation angles
- : Angular velocities
- mag, elec: Magnetic and electrostatic torques
- : Moment of inertia tensor
Sliding Surface for Adaptive Sliding Mode Control (ASMC):
Control Law for ASMC:
Control Algorithms Parameters[edit | edit source]
Parameters Definitions:
- m: Mass of the core
- , : Position and velocity vectors
- , : Orientation and angular velocity vectors
- mag, elec: Magnetic and electrostatic forces
- dist: Disturbance forces
- : Moment of inertia tensor
- mag, elec: Magnetic and electrostatic torques
- e(t): Error signal
- : Positive constant for sliding surface
- k: Adaptive gain for control law
- : Control input vector
Key Constants and Physical Quantities[edit | edit source]
- Planck's Constant (h):
- Reduced Planck's Constant ():
- Speed of Light (c):
- Elementary Charge (e):
- Vacuum Permittivity ():
This document compiles all the mathematical equations, values, and data relevant to the MHD Core project, providing a comprehensive reference for team members and stakeholders.