MHD Core: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:MHD Core Model 512.png|thumb|right|MHD Core | [[File:MHD Core Model 512.png|thumb|right|MHD Core]] | ||
[[MHD Tech]] | [[MHD Tech]] | ||
Latest revision as of 10:31, 25 November 2024
Magneto Hydro Dynamic Core
A Levitation Power Core
Fundimental Technology for the operation of a Star Speeder and Magneto Speeder
https://github.com/Jthora/MHD-Core
MHD Core Project: Mathematical Equations and Data[edit | edit source]
This document compiles all the mathematical equations, values, and data discussed in the MHD Core project presentations.
Theoretical Foundations[edit | edit source]
Quantum Field Theorist's Equations[edit | edit source]
Zero-Point Energy of a Quantum Harmonic Oscillator:
- E: Zero-point energy
- : Reduced Planck's constant
- : Angular frequency
Casimir Effect Force Between Two Plates:
- FCasimir: Casimir force
- c: Speed of light
- A: Area of the plates
- L: Separation between the plates
Dynamic Casimir Effect Photon Generation Rate:
- : Photon generation rate
- cavity: Resonant frequency of the cavity
- : Modulation amplitude of cavity length
- : Original cavity length
Expectation Value of the Energy-Momentum Tensor:
- Tμν: Energy-momentum tensor
- gμν: Metric tensor of spacetime
Electromagnetic Field Specialist's Equations[edit | edit source]
Modified Wave Equation with Scalar Potential:
- : Scalar potential
- : Charge density
- : Vacuum permittivity
Magnetic Flux Quantum:
- 0: Magnetic flux quantum
- h: Planck's constant
- e: Elementary charge
Material Development[edit | edit source]
Superconducting Material Properties[edit | edit source]
Yttrium Barium Copper Oxide (YBCO):
- Critical Temperature (Tc): Approximately 92 K
- Critical Current Density (Jc): Exceeding A/cm² at 77 K
Barium Zirconate Nanoparticles Enhancement:
- Increase in Critical Current Density: 30% under high magnetic fields
Quantum Behaviors in Superconducting Materials[edit | edit source]
Cooper Pair Formation:
- Electrons form bound pairs enabling zero electrical resistance.
Flux Quantization Equation:
- : Magnetic flux through a superconducting loop
- n: Integer (quantum number)
- 0: Magnetic flux quantum
Energy Gap in Superconductors:
- : Energy required to break a Cooper pair
- : Energy gap parameter
Engineering Design[edit | edit source]
Levitation System Equations[edit | edit source]
Magnetic Force Equation:
- mag: Magnetic force
- : Magnetic moment
- : Magnetic field
Electrostatic Force Equation:
- elec: Electrostatic force
- Q: Electric charge
- : Electric field
Control Systems and Simulations[edit | edit source]
Levitation Control Equations[edit | edit source]
State Equations:
- : Position vector
- : Velocity vector
- m: Mass of the core
- dist: Disturbance force
Cost Function for Nonlinear Model Predictive Control (NMPC):
- J: Cost function
- Tp: Prediction horizon
- ref: Reference position
- : Control input
- Q, R: Weighting matrices
Charge Regulation Equations[edit | edit source]
Sliding Surface Definition:
- s(t): Sliding surface
- e(t) = q_{\text{ref}}(t) - q(t): Charge error
- : Positive constant
Control Law:
- u(t): Control input
- k: Adaptive gain
- sign(s(t)): Sign function
Acoustic Integration[edit | edit source]
Hypersound Frequencies and Phonon Interactions[edit | edit source]
- Hypersound Frequency Range: Above 1 GHz
- Phonon-Electron Coupling: Interaction mechanism between high-frequency phonons and electrons in materials.
Environmental Alignment[edit | edit source]
Schumann Resonance Frequencies[edit | edit source]
Mode | Frequency (Hz) | Wavelength (km) |
---|---|---|
1 | ~7.83 | ~38,300 |
2 | ~14.3 | ~21,000 |
3 | ~20.8 | ~14,400 |
4 | ~27.3 | ~11,000 |
5 | ~33.8 | ~8,900 |
- Variability: Frequencies can shift by ±0.5 Hz due to ionospheric conditions.
Geomagnetic Pulsation Frequencies[edit | edit source]
Category | Frequency Range | Associated Phenomena |
---|---|---|
Pc1 | 0.2–5.0 Hz | Electromagnetic ion cyclotron waves |
Pc2 | 5–10 mHz | Field line resonances |
Pc3 | 10–45 mHz | Cavity modes in the magnetosphere |
Pc4 | 45–150 mHz | Large-scale magnetospheric oscillations |
Pc5 | 1–7 mHz | Solar wind coupling effects |
Mathematical Modeling[edit | edit source]
System Dynamics Equations[edit | edit source]
Core Motion Equations:
- : Acceleration
- : Coil currents
State-Space Representation:
- : Orientation angles
- : Angular velocities
- mag, elec: Magnetic and electrostatic torques
- : Moment of inertia tensor
Sliding Surface for Adaptive Sliding Mode Control (ASMC):
Control Law for ASMC:
Control Algorithms Parameters[edit | edit source]
Parameters Definitions:
- m: Mass of the core
- , : Position and velocity vectors
- , : Orientation and angular velocity vectors
- mag, elec: Magnetic and electrostatic forces
- dist: Disturbance forces
- : Moment of inertia tensor
- mag, elec: Magnetic and electrostatic torques
- e(t): Error signal
- : Positive constant for sliding surface
- k: Adaptive gain for control law
- : Control input vector
Key Constants and Physical Quantities[edit | edit source]
- Planck's Constant (h):
- Reduced Planck's Constant ():
- Speed of Light (c):
- Elementary Charge (e):
- Vacuum Permittivity ():
This document compiles all the mathematical equations, values, and data relevant to the MHD Core project, providing a comprehensive reference for team members and stakeholders.