EMP Pulse Blaster

From FusionGirl Wiki
Revision as of 15:29, 15 May 2024 by JonoThora (talk | contribs)
Jump to navigationJump to search

Electro Magnetic Pulse - Pulse Blaster

Parameters

Parameter Value/Equation Description
Range (r) 13 meters The effective distance over which the EMP pulse can disrupt electronic devices.
Energy Density to joules/m The amount of energy stored per unit volume.
Total Energy Output joules The total energy released in a single pulse.
Voltage Output (High-Voltage Generator Modules) 3000V, 4000V, 400kV, 1MV The voltage levels produced by the high-voltage generators.
  • Pulse Duration: The time over which the pulse is emitted.

Typical Duration: 1 nanosecond to 1 microsecond Factors Affecting Duration: Capacitor discharge time, inductance of coils, and circuit design.

  • Frequency Range: The frequency spectrum of the EMP pulse.

Typical Range: 1 kHz to 300 GHz Factors Affecting Frequency: Coil design, oscillator settings, and modulation unit.

  • Peak Magnetic Field Strength: The maximum strength of the magnetic field during the pulse.

Typical Strength: 0.1 to 10 teslas Factors Affecting Strength: Number of coil turns, current, and core material.

  • Capacitor Specifications: Parameters related to the capacitors used in the pulse blaster.

Capacitance: 1 μF to 1000 μF Voltage Rating: 3 kV to 50 kV Energy Storage: Calculated using

  • Inductor Specifications: Parameters related to the inductors used.

Inductance: 1 μH to 100 mH Current Rating: 10 A to 1000 A Core Material: Air, iron, or ferrite

  • Battery Specifications: Parameters related to the batteries used.

Capacity: 1 Ah to 100 Ah Voltage: 12V to 400V Energy Density: 100 Wh/kg to 300 Wh/kg

  • Safety Parameters: Parameters related to safety and regulatory compliance.

Overcurrent Protection: Rated to interrupt currents 10% above the maximum expected current. Voltage Regulation: Ensures output voltage remains within ±5% of the desired value. Insulation Resistance: Greater than 10 MΩ

  • Thermal Management: Parameters related to the cooling and thermal regulation.

Maximum Operating Temperature: 85°C Cooling Method: Passive (heat sinks) or active (cooling fans) Thermal Conductivity of Materials: 200 W/m·K (for copper)

  • Physical Dimensions: Size and weight of the EMP pulse blaster.

Dimensions: 30 cm x 20 cm x 10 cm (L x W x H) Weight: 5 kg to 15 kg Housing Material: Aluminum or reinforced plastic

  • Environmental Conditions: Parameters related to the operational environment.

Operating Temperature Range: -20°C to 60°C Humidity: 0% to 90% non-condensing Shock and Vibration: Compliant with MIL-STD-810G

  • Efficiency: The efficiency of energy conversion and delivery.

Overall Efficiency: 70% to 90% Losses: Due to resistance, dielectric heating, and electromagnetic radiation

Equations

  • Energy Density: The energy density of the electromagnetic field.

      • Where:
        • E is the energy density in joules per cubic meter (J/m)
        • B is the magnetic flux density in teslas (T)
        • \mu_0 is the permeability of free space ( H/m)
  • Volume of a Sphere: Used to calculate the volume of the area affected by the EMP.

      • Where:
        • V is the volume in cubic meters (m)
        • r is the radius of the sphere in meters (m)
  • Power Output (General): The power output during the EMP pulse.

      • Where:
        • Power Output is in watts (W)
        • Total Energy Output is in joules (J)
        • Pulse Duration is in seconds (s)
  • Capacitor Energy Storage: The energy stored in a capacitor.

      • Where:
        • E is the energy stored in joules (J)
        • C is the capacitance in farads (F)
        • V is the voltage in volts (V)
  • Inductance of a Coil: The inductance of a coil used in the EMP generator.

      • Where:
        • L is the inductance in henries (H)
        • N is the number of turns
        • \mu_0 is the permeability of free space ( H/m)
        • \mu_r is the relative permeability of the core material
        • A is the cross-sectional area of the coil in square meters (m)
        • l is the length of the coil in meters (m)
  • Magnetic Flux: The magnetic flux through a coil.

      • Where:
        • \Phi is the magnetic flux in webers (Wb)
        • B is the magnetic flux density in teslas (T)
        • A is the area in square meters (m)
        • \theta is the angle between the magnetic field and the normal to the surface
  • Faraday’s Law of Induction: The induced voltage in a coil.

      • Where:
        • V is the induced voltage in volts (V)
        • N is the number of turns
        • \frac{d\Phi}{dt} is the rate of change of magnetic flux in webers per second (Wb/s)
  • Resonant Frequency of LC Circuit: The frequency at which the LC circuit resonates.

      • Where:
        • f_0 is the resonant frequency in hertz (Hz)
        • L is the inductance in henries (H)
        • C is the capacitance in farads (F)
  • Magnetic Field of a Solenoid: The magnetic field inside a solenoid.

      • Where:
        • B is the magnetic field in teslas (T)
        • \mu_0 is the permeability of free space ( H/m)
        • N is the number of turns
        • l is the length of the solenoid in meters (m)
        • I is the current in amperes (A)
  • Heat Dissipation in Resistors: The power dissipated as heat in a resistor.

      • Where:
        • P is the power in watts (W)
        • I is the current in amperes (A)
        • R is the resistance in ohms (Ω)
  • Ohm’s Law: The relationship between voltage, current, and resistance.

      • Where:
        • V is the voltage in volts (V)
        • I is the current in amperes (A)
        • R is the resistance in ohms (Ω)
  • Electromagnetic Wave Equation: Describes the propagation of electromagnetic waves.

      • Where:
        • \mathbf{E} is the electric field in volts per meter (V/m)
        • \mu_0 is the permeability of free space ( H/m)
        • \epsilon_0 is the permittivity of free space ( F/m)
        • t is the time in seconds (s)

Components

  • Energy Storage and Management
    • Super Capacitors
      • Capacitor Cells
      • Connecting Wires
      • SubModules
        • Capacitor Bank
          • Multiple super capacitors connected in series or parallel
        • Charging Circuit
          • Ensures capacitors are charged safely and efficiently
        • Discharge Mechanism
          • Rapid release of stored energy
  • High-Voltage Generation
    • High-Voltage Generators
      • Transformer
      • Rectifier Circuit
      • Switching Mechanism
      • SubModules
        • Control Unit
          • Microcontroller or PLC for managing switching
        • Voltage Multiplier
          • Series of capacitors and diodes to increase voltage
        • SubComponents
          • Inductor Coils
          • Diodes
          • Switching Transistors
  • Electromagnetic Field Creation
    • Coils
      • Wire
      • Core Material
      • SubModules
        • Primary Coil
        • Secondary Coil
      • SubComponents
        • Insulation Material
        • Mounting Brackets
    • Magnet Arrays
      • Magnets
      • Magnet Holders
      • SubModules
        • Focusing Array
        • Blocking Array
      • SubComponents
        • Shielding Material
  • Pulse Control and Modulation
    • Pulse Control Circuitry
      • Timing Circuit
      • Modulation Unit
      • SubModules
        • Oscillator
        • Amplifier
      • SubComponents
        • Capacitors
        • Resistors
  • Power Supply
    • Batteries
      • Battery Cells
      • Battery Management System (BMS)
      • SubModules
        • Charging Circuit
        • Protection Circuit
      • SubComponents
        • Thermal Sensors
        • Fuses
  • Safety and Regulatory Compliance
    • Safety Features
      • Overcurrent Protection
      • Voltage Regulation
      • SubModules
        • Circuit Breakers
        • Surge Protectors
      • SubComponents
        • Insulation Materials
        • Safety Relays
  • Wire Gauge and Thermal Management
    • Wire
    • Heat Sinks
    • SubModules
        • Cooling Fans
        • Thermal Paste
    • SubComponents
        • Temperature Sensors
        • Thermal Cutoffs
  • Integration and Compatibility
    • Connectors
    • Mounting Hardware
    • SubModules
        • Interface Boards
        • Compatibility Testing Units
    • SubComponents
        • Screws and Fasteners
        • Alignment Tools

Safety and Regulatory

  • Safety Features
    • Overcurrent Protection
    • Voltage Regulation
    • Insulation Monitoring

Additional Considerations

  • Wire Gauge: Determine based on current and temperature rise.
  • Amps and Volts: Dependent on design and requirements.
  • Efficiency and Losses: Consider efficiency of components and system.
  • Integration and Compatibility: Ensure compatibility and effective integration of components.
  • Environmental Factors: Consider atmospheric conditions and electromagnetic interference.

Assembly and Testing

  1. Assemble Super Capacitor Bank and High-Voltage Generators
  2. Integrate Coils and Magnet Arrays with High-Voltage Output
  3. Install Pulse Control Circuitry and Battery System
  4. Implement Safety Features and Thermal Management
  5. Perform Integration Testing to Ensure Compatibility and Performance
  6. Conduct Safety Testing to Ensure Compliance with Regulatory Standards